Modelando la dinámica de un cantiléver de Microscopía de Fuerza Atómica AFM
Resumen
Parte de la investigación científica actual involucra el empleo de diversas herramientas computacionales,tanto teóricas como de experimentación. La simulación computacional puede brindar acercamientosvaliosos a la resolución de problemas científicos. La microscopía de fuerza atómica (AFM) constituyeuna de las técnicas de microscopía de sonda local; busca escanear las fuerzas interatómicas quepueden establecerse entre una muestra y una sonda. El movimiento oscilatorio del cantiléver se puedemodelar matemáticamente utilizando los primeros armónicos de la ecuación de un oscilador armónicoforzado con amortiguamiento. El hecho de que sea posible modelar matemáticamente permite queambos comportamientos puedan ser programados y computados para la predicción del comportamientofísico a nivel teórico.
Palabras clave
Citas
Referencias
Barcons, V., Verdaguer, A., Font, J., Chiesa, M.,
& Santos, S. (2012). Nanoscale Capillary
Interactions in Dynamic Atomic Force
Microscopy. The Journal of Physical
Chemistry C, 116(14), 7757-7766. doi:
1021/jp2107395
Binning, G. (1988). Atomic force microscope
and method for imaging surfaces with
atomic resolution.
Eslami, S., & Jalili, N. (2012). A comprehensive
modeling and vibration analysis of AFM
microcantilevers subjected to nonlinear
tip-sample interaction forces.
Ultramicroscopy, 117, 31-45. doi:
1016/j.ultramic.2012.03.016
Eves, B. J., & Green, R. G. (2012). Limitations
on accurate shape determination using
amplitude modulation atomic force
microscopy. Ultramicroscopy, 115, 14-20.
doi: 10.1016/j.ultramic.2012.01.016
García, R., & Perez, R. (2002). Dynamic atomic
force microscopy methods. Surface
Science Reports, 47.
Gómez, C. J., & Garcia, R. (2010). Determination
and simulation of nanoscale energy
dissipation processes in amplitude
modulation AFM. Ultramicroscopy,
1 0 ( 6 ) , 6 2 6 - 6 3 3 . d o i :
1016/j.ultramic.2010.02.023
Gotsmann, B., & Fuchs, H. (2002). Dynamic
AFM using the FM technique with
constant excitation amplitude. Applied
Surface Science, 188(3-4), 355-362. doi:
1016/s0169-4332(01)00950-3
Hölscher, H., & Schwarz, U. D. (2007). Theory of
amplitude modulation atomic force
microscopy with and without Q-Control.
International Journal of Non-Linear
Mechanics, 42(4), 608-625. doi:
1016/j.ijnonlinmec.2007.01.018
Kahrobaiyan, M. H., Ahmadian, M. T., Haghighi,
P., & Haghighi, a. (2010). Sensitivity and
resonant frequency of an AFM with sidewall
and top-surface probes for both flexural and
torsional modes. International Journal of
Mechanical Sciences, 52(10), 1357-1365.
doi: 10.1016/j.ijmecsci.2010.06.013
Kahrobaiyan, M. H., Rahaeifard, M., & Ahmadian,
M. T. (2011). Nonlinear dynamic analysis
of a V-shaped microcantilever of an atomic
force microscope. Applied Mathematical
Modelling, 35(12), 5903-5919. doi:
1016/j.apm.2011.05.039
Korayem, M. H., Kavousi, a., & Ebrahimi, N.
(2011). Dynamic analysis of tapping-mode
AFM considering capillary force interactions.
Scientia Iranica, 18(1), 121-129. doi:
1016/j.scient.2011.03.014
Korayem, M. H., Noroozi, M., & Daeinabi, K.
(2012). Control of an atomic force
microscopy probe during nano-manipulation
via the sliding mode method. Scientia
Iranica, 19(5), 1346-1353. doi:
1016/j.scient.2012.06.026
Lin, S.-M. (2006). Analytical solutions of the
•rst three frequency shifts of AFM.
Lin, S.-M., Lee, S.-Y., & Chen, B.-S. (2006).
Closed-form solutions for the frequency shift
of V-shaped probes scanning an inclined
surface. Applied Surface Science, 252(18),
2 4 9 - 6 2 5 9 . d o i :
1016/j.apsusc.2005.08.027
Lin, S.-M., Liauh, C.-T., Wang, W.-R., & Ho,
S.-H. (2007). Analytical solutions of the
frequency shifts of several modes in AFM
scanning an inclined surface, subjected to
the Lennard-Jones force. International
Journal of Solids and Structures, 44(3-4),
9 9 - 8 1 0 . d o i :
1016/j.ijsolstr.2006.05.024
Lin, S.-M., & Lin, C.-C. (2009). Phase shifts
and energy dissipations of several modes
of AFM: Minimizing topography and
dissipation measurement errors. Precision
Engineering, 33(4), 371-377. doi:
1016/j.precisioneng.2008.10.005
Lin, S.-M., & Wang, W.-R. (2009). Frequency
shifts and analysis of AFM accompanying
with coupled flexural–torsional motions.
International Journal of Solids and
Structures, 46(24), 4231-4241. doi:
1016/j.ijsolstr.2009.08.016
Liu, W., Yan, Y., Hu, Z., Zhao, X., Yan, J., &
Dong, S. (2012). Study on the nano
machining process with a vibrating AFM
tip on the polymer surface. Applied Surface
Science, 258(7), 2620-2626. doi:
1016/j.apsusc.2011.10.107
Melcher, J., Carrasco, C., Xu, X., Carrascosa,
J. L., Gómez-Herrero, J., José de Pablo,
P., & Raman, A. (2009). Origins of phase
contrast in the atomic force microscope
in liquids. Proc Natl Acad Sci U S A,
( 3 3 ) , 1 3 6 5 5 - 1 3 6 6 0 . d o i :
1073/pnas.0902240106
Pai, N.-S., Wang, C.-C., & Lin, D. T. W. (2010).
Bifurcation analysis of a microcantilever
in AFM system. Journal of the Franklin
Institute, 347(7), 1353-1367. doi:
1016/j.jfranklin.2010.06.008
Pishkenari, H. N., & Meghdari, A. (2011). Effects
of higher oscillation modes on TM-AFM
measurements. Ultramicroscopy, 111(2),
0 7 - 1 1 6 . d o i :
1016/j.ultramic.2010.10.015
Raman, A., Melcher, J., & Tung, R. (2008).
Cantilever dynamics in atomic force
microscopy Dynamic atomic force
microscopy , in essence , consists of a
vibrating. 3(1), 20-27.
Raul D. Rodiguez, E. L., Jaques Jupille. (2012).
Probing the probe AFM tip-pro•ling via
nanotemplates to determine.pdf.
Schwartz, G. a., Riedel, C., Arinero, R.,
Tordjeman, P., Alegría, a., & Colmenero,
J. (2011). Broadband nanodielectric
spectroscopy by means of amplitude
modulation electrostatic force microscopy
(AM-EFM). Ultramicroscopy, 111(8),
3 6 6 - 1 3 6 9 . d o i :
1016/j.ultramic.2011.05.001
Solares, S. D. (2007). Single biomolecule
imaging with frequency and force
modulation in tapping-mode atomic force
microscopy. The journal of physical
chemistry. B, 111(9), 2125-2129. doi:
1021/jp070067+
Tamayo, J., Humphris, a. D., Owen, R. J., &
Miles, M. J. (2001). High-Q dynamic force
microscopy in liquid and its application
to living cells. Biophysical journal, 81(1),
-537. doi: 10.1016/s0006-
(01)75719-0
Wang, C.-C., & Yau, H.-T. (2011). Application
of the differential transformation method
to bifurcation and chaotic analysis of an
AFM probe tip. Computers & Mathematics
with Applications, 61(8), 1957-1962. doi:
1016/j.camwa.2010.08.019
Refbacks
- No hay Refbacks actualmente.