ANÁLISIS COMPARATIVO DE MODELOS DE INTERPOLACIÓN DE LA PRECIPITACIÓN EN GUATEMALA (1981-2019)
Resumen
Palabras clave
Citas
Caruso, C., & Quarta, F. (1998).Interpolation methodscomparison. Computers and Mathematics with Applications,35(12), 109–126. https://doi.org/10.1016/S0898-1221(98)00101-1
Chen, D., Ou, T., Gong, L., Xu, C. Y., Li, W., Ho, C.H., & Qian, W. (2010). Spatial interpolationof daily precipitation in China: 1951-2005.Advances in Atmospheric Sciences, 27(6),1221–1232. https://doi.org/10.1007/s00376-010-9151-y
Chen, T., Ren, L., Yuan, F., Yang, X., Jiang, S., Tang,T., Liu, Y., Zhao, C., & Zhang, L. (2017).Comparison of spatial interpolation schemesfor rainfall data and application in hydrologicalmodeling.Water (Switzerland), 9(5), 1–18.https://doi.org/10.3390/w9050342
Delrieu, G., Wijbrans, A., Boudevillain, B., Faure,D., Bonnifait, L., & Kirstetter, P. E. (2014).Geostatistical radar-raingauge merging:A novel method for the quantification ofrain estimation accuracy.Advances inWater Resources, 71, 110–124. https://doi.org/10.1016/j.advwatres.2014.06.005
Di Piazza, A., Conti, F. Lo, Noto, L. V., Viola, F., & LaLoggia, G. (2011). Comparative analysis ofdifferent techniques for spatial interpolationof rainfall data to create a serially completemonthly time series of precipitation for Sicily,Italy.International Journal of Applied EarthObservation and Geoinformation, 13(3), 396–408. https://doi.org/10.1016/j.jag.2011.01.005
Hadi, S. J., & Tombul, M. (2018). Comparison ofSpatial Interpolation Methods of Precipitationand Temperature Using Multiple IntegrationPeriods.Journal of the Indian Society ofRemote Sensing, 46(7),1187–1199. https://doi.org/10.1007/s12524-018-0783-1
Hancock, P. A., & Hutchinson, M. F. (2006). Spatialinterpolation of large climate data sets usingbivariate thin plate smoothing splines.
Environmental Modelling & Software,21(12), 1684–1694. https://doi.org/10.1016/J.ENVSOFT.2005.08.005
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P.G., & Jarvis, A. (2005). Very high resolutioninterpolated climate surfaces for global landareas.International Journal of Climatology,25(15),1965–1978. https://doi.org/10.1002/JOC.1276
Knoben, W. J. M., Freer, J. E., & Woods, R. A. (2019).Technical note: Inherent benchmark or not?Comparing Nash-Sutcliffe and Kling-Guptaefficiency scores.Hydrology and Earth SystemSciences, 23(10),4323–4331. https://doi.org/10.5194/hess-23-4323-2019
Li, J. (2016). Assessing spatial predictive modelsin the environmental sciences: Accuracymeasures, data variation and varianceexplained.Environmental Modelling andSoftware, 80, 1–8. https://doi.org/10.1016/j.envsoft.2016.02.004
Ly, S., Degré, A., & Charles, C. (2013). Differentmethods for spatial interpolation of rainfall datafor operational hydrology and hydrologicalmodeling at watershed scale. A review.
Biotechnology, Agronomy and Society and Environment, 17(2),392–406. https://doi.org/10.6084/m9.figshare.1225842.v1
Nashwan, M. S., Shahid, S., & Wang, X. (2019).Uncertainty in estimated trends using griddedrainfall data: A case study of Bangladesh.Water (Switzerland), 11(2), 5–8. https://doi.org/10.3390/w11020349
Newlands, N. K., Davidson, A., Howard, A., & Hill,H. (2011). Validation and inter-comparison ofthree methodologies for interpolating dailyprecipitation and temperature across Canada.Environmetrics, 22(2),205–223. https://doi.org/10.1002/env.1044
Portalés, C., Boronat-Zarceño, N., Pardo-Pascual,J., & Balaguer-Beser, A. (2008).Un nuevo
método para el cálculo de precipitaciones medias mediante técnicas de interpolación geoestadística considerando las características geográficas y topográficas
del terreno(pp. 1–8). Valencia: Congreso Internacional de Ingeniería Geomática y Topográfica.
Price, D. T., McKenney, D. W., Nalder, I. A.,Hutchinson, M. F., & Kesteven, J. L. (2000).A comparison of two statistical methods forspatial interpolation of Canadian monthlymean climate data.Agricultural and ForestMeteorology, 101(2–3), 81–94. https://doi.org/10.1016/S0168-1923(99)00169-0
Seaman, R. S. (1988). Some real data tests of theinterpolation accuracy of Bratset h’s successivecorrection met hod.Dynamic Metereology andOceanography, 40(2), 40, 173–176. https://doi.org/10.3402/tellusa.v40i2.11791
Taesombat, W., & Sriwongsitanon, N. (2009).Areal rainfall estimation using spatialinterpolation techniques.ScienceAsia,35(3), 268–275. https://doi.org/10.2306/scienceasia1513-1874.2009.35.268
Wagner, P. D., Fiener, P., Wilken, F., Kumar, S., &Schneider, K. (2012). Comparison andevaluation of spatial interpolation schemes fordaily rainfall in data scarce regions.Journalof Hydrology,464–465, 388–400. https://doi.org/10.1016/j.jhydrol.2012.07.026
Wang, S., Huang, G., Lin, Q., Li, Z., Zhang, H., &Fan, Y. (2014). Comparison of interpolationmethods for estimating spatial distribution ofprecipitation in Ontario, Canada.InternationalJournal of Climatology,34(14), 3745–3751.https://doi.org/10.1002/joc.3941
Xu, W., Zou, Y., Zhang, G., & Linderman, M. (2014).A comparison among spatial interpolationtechniques for daily rainfall data in SichuanProvince, China.International Journal ofClimatology, 35(10), 2898–2907. https://doi.org/10.1002/joc.4180
Zhang, M., Leon, C. de, & Migliaccio, K. (2018).Evaluation and comparison of interpolatedgauge rainfall data and gridded rainfall data inFlorida, USA.Hydrological Sciences Journal,63(4),561–582. https://doi.org/10.1080/02626667.2018.1444767
Refbacks
- No hay Refbacks actualmente.