Parámetros de modelos asimétricos obtenidos por reducción de datos experimentales ELV para 28 sistemas binarios

María Alejandra de León de León, <u>aledeleon95@gmail.com</u>, Mónica Isabel Huitz Jereda, <u>moni_isa95@hotmail.com</u>, Carlos Andrés Rodríguez Ortega, <u>carodriguezgt@gmail.com</u>. Estudiantes de último año de Ingeniería Química de la Universidad Rafael Landívar

RESUMEN

Según (Berro & Embid, 1990), las propiedades termodinámicas se utilizan para caracterizar el equilibrio líquido – vapor. Por lo tanto, tiene una gran importancia en el área industrial en especial en las operaciones de separación que basan en la diferencia relativa de las volatilidades. Algunos ejemplos son las evaporaciones flash, destilación, absorción, extracción, entre otros.

El diseño de los equipos que son utilizados para las operaciones de separación requiere de un conocimiento cuantitativo lo más preciso sobre las propiedades parciales de equilibrio de los componentes de una mezcla en específico.

Según (Clará, Gómez, & Sólimo, 2007), para obtener las estimaciones se debe tomar en cuenta datos experimentales que sean confiables para la mezcla de estudio, a las condiciones de presión, temperatura y composición deseada. Para ello, se pueden efectuar pruebas de consistencia con la

ABSTRACT

Thermodynamic properties are used to characterize vapor-liquid equilibrium, (Berro & Embid, 1990). Therefore, it has a great importance in the industrial area specially in operations related to separation, wich are based on the relative difference of the volatilities of the components involved. Some examples are flash evaporation, distillation, absorption, extraction, among others. Ecuación Gibbs/Duhem o bien por el método de áreas de Redlich – Kister, el cual se basa en dicho principio.

Sin embargo, existen ocasiones en las que no se cuenta con la información suficiente, por lo que se emplean técnicas estimativas encargadas de obtener las propiedades termodinámicas de equilibrio de fases para una mezcla determinada. En este caso, se analizado 28 sistemas diferentes, han obteniendo los parámetros de Margules, Van Laar y las constantes de energía de interacción binaria independientes de la temperatura de Wilson mediante la reducción de datos para el equilibro líquido-vapor. La información recopilada puede ser utilizada para obtener los coeficientes de actividad y por ende muchas otras propiedades para tomar en cuenta en el diseño de equipo tales como torres de destilación, entre otros.

Palabras clave: Reducción de datos EVL, Margules, Van Laar, Wilson, modelos asimétricos.

Thus, the design of the equipment that is used for these operations requires a precise quantitative knowledge on the partial equilibrium properties of the components of a specific mixture.

(Clará, Gómez, & Sólimo, 2007), in order to obtain estimates of the properties, experimental data that are reliable for the study mixture, the desire pressure, temperature and composition conditions must be considered. To do this consistency tests can be performed with the Gibbs/Duhem Equation or by the Redlich-Kister Area Method, which is based on this principle.

Nevertheless, there are times when there is not enough information, so is necessary to apply estimation techniques in charge of obtaining the thermodynamic properties of phase equilibrium for the analyzed mixture. In this case, 30 binary systems were analyzed obtaining the parameters of Margules, Van Laar and the binary interaction energy

INTRODUCCIÓN

La mezcla de dos o más componentes volátiles y miscibles da como resultado la formación de una solución real, cuyas propiedades divergen considerablemente del comportamiento ideal, donde una propiedad de solución puede estimarse mediante el promedio ponderado de sus fracciones molares. El grado de divergencia entre el comportamiento de la solución real y la solución ideal se expresa en términos del coeficiente de actividad (Levine, 2004). Este encarga de tomar en cuenta las se características no ideales de la fase líquida, asociando una concentración efectiva. Para obtener este parámetro se emplean datos experimentales en equilibrio a ciertas condiciones, por lo general de presiones bajas o moderadas.

Según (Dong, Gong, Liu, & Wu, 2010), si el coeficiente de actividad tiene un valor menor a la unidad significa que la atracción entre las moléculas diferentes supera a la atracción entre moléculas iguales. Por el contrario, un coeficiente de actividad mayor a la unidad refleja que la atracción entre moléculas iguales es mayor a la atracción entre moléculas diferentes. Cuando la desviación de la ley de Raoult es lo suficientemente marcada se observan puntos de presión máxima o mínima, donde la fracción molar de ambos componentes es igual y se considera un azeótropo.

Empleando una propiedad, llamada fugacidad, (Comelli & Francesconi, 1995) la cual constants independent of the temperature of Wilson by reducing data for the vapor-liquid equilibrium. The information collected can be used to obtain the activity coefficients and therefore many other properties to consider in the design of equipment such as distillation towers, among others.

Keywords: Data reduction, Margules, Van Laar, Wilson, asymmetric models.

corresponde a una presión efectiva ejercida por la sustancia, el coeficiente de actividad se describe como el cociente entre

la fugacidad que tiene un componente *i* en la mezcla y la fugacidad en una solución ideal. Para Smith, Van Ness y Abbott (2007) esto se reduce a la definición:

$$\gamma_i \equiv \frac{\hat{f}_i}{x_i f_i} \qquad (1)$$

En todo momento, la energía libre de Gibbs de una sustancia *i* en la mezcla puede expresarse como una función de las variables canónicas: presión, temperatura y fracción molar de la especie *i*. Por tanto, también puede establecerse una relación entre el coeficiente de actividad y la energía libre de Gibbs molar parcial de la especie (Chang-Ha & Holder, 1993):

$$Ln(\gamma_{i}) = \left[\frac{\partial \left(\frac{nG^{E}}{RT}\right)}{\partial n_{i}}\right]_{P,T,n_{i}} = \frac{\overline{G}_{i}^{E}}{RT} \qquad (2)$$

La anterior definición muestra al coeficiente de actividad como una propiedad molar parcial del componente *i* y por tanto se puede emplear para estimar propiedades de la mezcla. Esta definición fue utilizada en el proceso de reducción de datos del equilibrio vapor-líquido en los 28 sistemas binarios analizados. Así mismo, permitió hacer una prueba de consistencia termodinámica mediante la prueba de Redlich-Kister, evaluando la expresión:

$$\int_{x_1=0}^{x_1=1} Ln\left(\frac{\gamma_1}{\gamma_2}\right) dx_1 \quad (3)$$

Todos los sistemas binarios analizados en este artículo tienen una diferencia máxima entre el resultado obtenido de la expresión anterior y el área total de un 5%. Este criterio garantiza que los datos sean consistentes y válidos para la reducción de datos.

Al analizar la mezcla de vapor-líquido se observa que tiende a su estado de mínima energía, un equilibrio donde la fugacidad de las dos especies en cada una de las fases es igual. Para la estimación de los parámetros de las ecuaciones de Margules, Van Laar y Wilson se han propuesto las siguientes hipótesis simplificadoras: la fugacidad del componente *i* en la fase de vapor es igual a la fugacidad en la fase líquida, por tanto, puede realizarse la sustitución correspondiente. Se presión considerará que la lo es suficientemente baja para que el coeficiente de fugacidad en mezcla de todas las especies en la fase de vapor sea igual a la unidad, representando una fase de vapor ideal y permitiendo que el factor de Poynting tienda a la unidad. De esta cuenta, los coeficientes de correspondientes a los actividad datos experimentales se calcularon mediante el modelo:

 $\gamma_{i} \equiv \frac{\hat{f}_{i}^{liquido}}{x_{i} f_{i}^{liquido}} = \frac{y_{i} \hat{\phi}_{i}^{vapor} P}{x_{i} \phi_{i}^{sat} P_{i}^{sat} \exp\left(\frac{V_{i}^{l} \left(P - P_{i}^{sat}\right)}{RT}\right)}$ $= \frac{y_{i} P}{x_{i} P_{i}^{sat}}$ (4)

La información bibliográfica recopilada corresponde a datos P-x-y a temperatura constante y por tanto la única variable requerida para estimar el coeficiente de actividad de cada uno de los datos fue la presión de saturación. En este caso se escogió como modelo la ecuación de Antoine para su estimación. Con el conocimiento del coeficiente de actividad asociado a cada una de las fracciones molares de los componentes de los sistemas binarios, se ha procedido a estimar la energía libre de Gibbs de Exceso en todos los casos. Aplicando la sumabilidad de las propiedades molares parciales:

$$\frac{G}{RT}^{E} = x_{1}Ln(\gamma_{1}) + x_{2}Ln(\gamma_{2})$$
 (5)

Esta se define, a su vez, como la diferencia entre el valor real de la propiedad de la solución y el valor que tendría como solución ideal a las mismas condiciones, expresada de la siguiente forma:

$$G^{E} \equiv G - G^{id} \qquad (6)$$

De manera aue se han postulado empíricas y semiempíricas correlaciones basadas en la energía libre de Gibbs en exceso que permiten calcular los coeficientes de actividad por medio de parámetros de correlación. Los modelos que se abarcarán en este artículo serán: Margules, Van Laar y Wilson. Se han seleccionado estos modelos debido a su simplicidad de cálculo en comparación con otros modelos, como el NTRL y el UNIFAC (Poiling, Prausnitz y O'Conell, 2004).

El modelo de Margules es adecuado cuando la diferencia de densidades molares es grande. Asimismo, tanto el modelo de Van Laar como el modelo Margules se emplea más para equilibrio líquido/líquido mientras que Wilson por tener dependencia de la temperatura se aplica mayormente a equilibrio vapor/líquido y para sustancias polares.

Por lo tanto, este artículo se basa en desarrollar los parámetros A₁₂ y A₂₁ que se utilizan para la obtención de los coeficientes de actividad para los diferentes modelos. Debido a que muchas veces no se encuentran dichos parámetros para la combinación de la solución binaria deseada. En la literatura se encuentran variedad de combinaciones, pero no del todo. Por lo que, en este artículo se

pretende adjuntar una mayor cantidad de valores a partir de valores experimentales con los diferentes modelos mencionados con anterioridad, basadas en las ecuaciones proporcionadas por el Manual del Ingeniero Químico (8va edición).

La expresión utilizada para la reducción de datos con el modelo de Margules es la siguiente (Compostizo, Crespo-Colín, & Rubio, 2009):

$$\frac{G^{E}}{x_{1}x_{2}RT} = A_{21}x_{1} + A_{12}x_{2}$$
 (7)

En donde, al sustituir x_2 por $1 - x_1$ se obtiene:

$$\frac{G^{E}}{x_{1}x_{2}RT} = (A_{21} - A_{12})x_{1} + A_{12}$$
 (8)

Por lo que dicha expresión toma la forma general de una recta. Lo que hace posible que, al graficar los datos experimentales, se obtenga una línea de tendencia, que correlacione los datos. Y posteriormente, se puedan obtener los parámetros por despeje (A_{21}) y por el intercepto (A_{12}) .

Por otro lado, con el modelo de Van Laar la expresión es la siguiente (Younghum, Keskinen, & Juhani, 2004).

$$\frac{x_1 x_2}{G^E / RT} = \left(\frac{1}{A_{21}'} - \frac{1}{A_{12}'}\right) (x_1) + \frac{1}{A_{21}'}$$
(9)

En donde, se procede de igual forma por despeje obtener A_{21} y A_{12} .

Por último, se encuentran los parámetros dependientes de la temperatura del modelo de Wilson. Los cuales se obtienen de la siguiente forma (Zurita, Soria, Postigo, & Katz, 2015).

$$\Lambda_{12} = \frac{v_2^{\ L}}{v_1^{\ L}} \exp\left(-\frac{\lambda_{11} - \lambda_{21}}{RT}\right)$$
(10)
$$\Lambda_{21} = \frac{v_1^{\ L}}{v_2^{\ L}} \exp\left(-\frac{\lambda_{22} - \lambda_{12}}{RT}\right)$$
(11)

En donde V_1^L representa el volumen molar de la sustancia pura líquida del componente 1. Mientras que $\lambda_{ii} - \lambda_{ij}$ representa la interacción de energía entre los componentes *i* y *j* y son parámetros independientes de la temperatura. Por lo que en este artículo se buscó obtenerlos.

Se obtuvieron los parámetros Λ_{12} y Λ_{21} con los valores experimentales a la temperatura determinada. Para ello, se obtuvo $\frac{G^{\epsilon}}{RT}$ a partir de los datos experimentales y se estimaron también los valores de $\frac{G^{\epsilon}}{RT}_{estimada}$. Empleando la expresión:

$$\frac{G^{E}}{RT}_{estimada} = (12)$$

- $x_{1} \times Ln(x_{1} + x_{2} \times \Lambda_{12}) - x_{2} \times Ln(x_{2} + x_{1} \times \Lambda_{21})$

Empleando el complemento Solver de Excel, se procedió a resolver un modelo de programación no lineal, cuya función objetivo fue minimizar la sumatoria de los cuadrados de la diferencia entre la propiedad experimental y la estimada, $\sum \left(\frac{G^{\mathcal{E}}}{RT} - \frac{G^{\mathcal{E}}}{RT}\right)^{2}$. A partir de los parámetros dependientes de la temperatura, se procedió al cálculo de los

la temperatura, se procedió al cálculo de los parámetros independientes, $\lambda_{ii} - \lambda_{ij}$, expresados en cal/mol.

Por último, se procedió a determinar cuál de los tres modelos representaba de mejor manera los datos experimentales. Para este fin se recurrió a la prueba de residuales de Van Ness, definiendo dos parámetros:

$$\Delta P = P_{\text{exp erimental}} - P_{\text{estimada}}$$
(13)
$$\Delta y_1 = y_{\text{exp erimental}} - y_{\text{estimada}}$$
(14)

Para todos los sistemas, los residuales presentan valores bajos que muestran una correlación fuerte entre los datos experimentales y los predichos por los modelos. Aquel modelo con los menores valores de residuales promedios fue escogido como el modelo de mejor ajuste a los datos del sistema binario.

Resultados

Tabl	a 1. Parámetros de Margules para 28 sistemas binari	os.

No	Sistema	Parámetros de Margules			
110.	Sistema	A ₁₂	A ₂₁	T (K)	
1	2-Metoxi-2-Metilpropano (1) / 2-Butanol (2)	0.3513	0.7576	298.15	
2	1,1,2,2-tetrafluoroetano (1) / Propano (2)	1.7316	1.5048	278.15	
3	1,2-Dicloroetano (1) / Tetracloruro de Carbono (2)	0.5925	0.6065	313.15	
4	1,3-Dioxolano (1) / Ciclohexano (2)	1.4289	1.6301	313.15	
5	1,3-Dioxolano (1) / Etanol (2)	1.1084	0.9231	338.15	
6	1,4-Diclorobutano (1) / Ciclohexanona	0.0981	2.7833	308.15	
7	1-Propanol (1) / Dodecano (2)	1.3449	2.5104	343.40	
8	2,2,4 Trimetilpentano (1) / 1,2-Dicloroetano (2)	1.2158	0.9716	343.15	
9	2-Propanona (1) / 2-Etoxi-2-metilpropano (2)	0.8737	0.9157	323.00	
10	Acetona (1) / Diisopropil éter (2)	0.6901	0.9193	343.26	
11	Ciclohexano (1) / Nafaleno (2)	0.7718	0.5852	413.15	
12	Cloroformo (1) / Metil isobutil-cetona (2)	-1.3610	-2.0030	303.15	
13	Diisopropil éter (1) / 1-Propanol (2)	0.7966	1.2439	303.15	
14	Diisopropil éter (1) / Metanol (2)	1.8622	2.1868	305.15	
15	Dimetil éter (1) / Metanol (2)	0.782	1.1012	313.15	
16	Etanol (1) / Isooctano (2)	2.3033	1.8938	333.15	
17	Etanol (1) / n-Hexano (2)	2.6008	2.0138	313.15	
18	Etanol (1) / DBE (2)	1.7940	1.4873	333.15	
19	Etanol (1) / n-octano (2)	2.3894	2.1641	348.15	
20	Etanol (1) / Benceno (2)	2.0363	1.3387	348.15	
21	Etanolamina (1) / Agua (2)	-1.4572	-1.0641	283.15	
22	Nitroetano (1) / 1,4-Diclorobutano (2)	0.6965	0.2708	343.15	

23	Nitrometano (1) / 1,4-Diclorobutano (2)	0.8059	0.9046	353.15
24	N-pentano (1) / Diclorometano (2)	1.3352	0.7413	298.15
25	Propil vinil éter (1) / Etanol (2)	1.4555	1.6609	323.15
26	Propil vinil éter (1) / Isooctano (2)	0.3392	0.1800	323.15
27	Terbutanol (1) / Heptano (2)	2.0999	1.2025	313.15
28	Tetrahidrofurano (1) / 1-Propanol (2)	0.6594	0.5084	298.15

Fuente: Elaboración propia (2017), según método de (Wu & Sandler, 1989)

Tabla 2. Parámetros de van Laar para 28 sistemas binarios, según método de (Wu & Sandler, 1989)

No	Sistema	Van Laar			
110.			A ₂₁	T (K)	
1	2-Metoxi-2-Metilpropano (1) / 2-Butanol (2)	0.3761	0.8774	298.15	
2	1,1,2,2-tetrafluoroetano (1) / Propano (2)	1.7352	1.5151	278.15	
3	1,2-Dicloroetano (1) / Tetracloruro de Carbono (2)	0.5922	0.6065	313.15	
4	1,3-Dioxolano (1) / Ciclohexano (2)	1.4276	1.6433	313.15	
5	1,3-Dioxolano (1) / Etanol (2)	1.1081	0.9305	338.15	
6	1,4-diclorobutano (1) / Ciclohexanona	0.0888	0.1262	308.15	
7	1-Propanol (1) / Dodecano (2)	1.5540	2.5400	343.40	
8	2,2,4 Trimetilpentano (1) / 1,2-Dicloroetano (2)	1.2373	0.9340	343.15	
9	2-Propanona (1) / 2-Etoxi-2-metilpropano (2)	0.8724	0.9177	323.00	
10	Acetona (1) / Diisopropil éter (2)	0.7092	0.9246	343.26	
11	Ciclohexano (1) / Nafaleno (2)	0.7891	0.5554	413.15	
12	Cloroformo (1) / Metil isobutil-cetona (2)	-1.3550	- 1.9770	303.15	
13	Diisopropil éter (1) / 1-Propanol (2)	0.7576	1.3518	303.15	
14	Diisopropil éter (1) / Metanol (2)	1.8779	2.1930	305.15	
15	Dimetil éter (1) / Metanol (2)	0.4863	2.791	313.15	
16	Etanol (1) / Isooctano (2)	2.3520	1.8876	333.15	
17	Etanol (1) / n-Hexano (2)	2.5994	2.0530	313.15	
18	Etanol (1) / DBE (2)	1.7864	1.4990	333.15	

19	Etanol (1) / n-octano (2)	2.4092	2.1567	348.15
20	Etanol (1) / Benceno (2)	2.0296	1.4136	348.15
21	Etanolamina (1) / Agua (2)	-1.4562	- 1.1097	283.15
22	Nitroetano (1) / 1,4-Diclorobutano (2)	0.8051	0.2990	343.15
23	Nitrometano (1) / 1,4-Diclorobutano (2)	0.7918	0.9072	353.15
24	N-pentano (1) / Diclorometano (2)	1.3519	0.8155	298.15
25	Propil vinil éter (1) / Etanol (2)	1.4615	1.6505	323.15
26	Propil vinil éter (1) / Isooctano (2)	0.5500	0.1200	323.15
27	Terbutanol (1) / Heptano (2)	1.9646	1.5865	313.15
28	Tetrahidrofurano (1) / 1-Propanol (2)	0.8317	0.3389	298.15

Fuente: Elaboración propia (2017)

Tabla 3. Parámetros de Wilson para 28 sistemas binarios, según método de (Zaitseva, y otros, 1986).

No	Sistema	Wilson		
110.	Sistema	$\lambda_{12} - \lambda_{11}$	$\lambda_{21} - \lambda_{22}$	
1	2-Metoxi-2-Metilpropano (1) / 2-Butanol (2)	-319.9564	853.6246	
2	1,1,2,2-tetrafluoroetano (1) / Propano (2)	786.2642	416.4104	
3	1,2-Dicloroetano (1) / Tetracloruro de Carbono (2)	287.3676	102.3806	
4	1,3-Dioxolano (1) / Ciclohexano (2)	-510.0000	742.5423	
5	1,3-Dioxolano (1) / Etanol (2)	-371.1441	-53.4667	
6	1,4-diclorobutano (1) / Ciclohexanona	52.6175	-14.4734	
7	1-Propanol (1) / Dodecano (2)	1651.1425	493.8144	
8	2,2,4 Trimetilpentano (1) /1,2-Dicloroetano (2)	60.2817	898.2383	
9	2-Propanona (1) / 2-Etoxi-2-metilpropano (2)	695.3034	-39.10248	
10	Acetona (1) / Diisopropil éter (2)	521.5513	129.8470	
11	Ciclohexano (1) / Nafaleno (2)	653.8631	42.80181	
12	Cloroformo (1) / Metil isobutil-cetona (2)	-909.0235	-783.5375	
13	Diisopropil éter (1) / 1-Propanol (2)	2397.4637	1019.7260	

14	Diisopropil éter (1) / Metanol (2)	91.3300	1795.1427
15	Dimetil éter (1) / Metanol (2)	140.7673	625.132
16	Etanol (1) / Isooctano (2)	2034.7295	143.0714
17	Etanol (1) / n-Hexano (2)	2212.9710	321.5961
18	Etanol (1) / DBE (2)	1532.0817	-154.6702
19	Etanol (1) / n-octano (2)	2205.4240	479.4957
20	Etanol (1) / Benceno (2)	1414.9500	129.2700
21	Etanolamina (1) / Agua (2)	-907.0905	251.1011
22	Nitroetano (1) / 1,4-Diclorobutano (2)	962.5261	-487.42
23	Nitrometano (1) / 1,4-Diclorobutano (2)	642.5098	38.4890
24	N-pentano (1) / Diclorometano (2)	336.7386	436.2348
25	Propil vinil éter (1) / Etanol (2)	-483.7773	-755.1997
26	Propil vinil éter (1) / Isooctano (2)	369.4100	-153.9700
27	Terbutanol (1) / Heptano (2)	1435.9747	51.0694
28	Tetrahidrofurano (1) / 1-Propanol (2)	435.4463	-40.65813

Fuente: Elaboración propia (2017)

Tabla 4. Parámetros de la	ecuación	de Antoine,	según	(Smith,	Van Ness,	& Abbott,
2007).			_	-		

Sustancia	Base del logaritm o	Presión	т	A	В	С
1-Propanol	e	kPa	°C	16.1154	3483.67	205.807
2-Metoxi-2- Metilpropano	е	Ра	К	57.13	-5200.7	-5.14
1,1,2,2- Tetrafluoroetano	10	mmHg	°C	7.27202	1020.10 4	255.456
1,2-Dicloroetano	е	mmHg	°C	16.18	2927.17	-50.22
1,3-Dioxolano	10	Bar	К	4.11859	1237.37 7	-48.735
1,4-Diclorobutano	10	kPa	К	6.11603	1495.7	-63.15
2,2,4-Trimetilpentano	10	Bar	К	6.96602	1339.49	229.033

2-Butanol	е	Ра	К	22.0892	2980	-90.35
2-Etoxi-2-metilpropano	е	kPa	К	6.47833	2455.64 7	-65.578
2-Propanona	е	kPa	К	7.74439	2940.01 2	-36.321
Acetona	е	kPa	°C	14.3145	2756.22	228.060
Agua	10	mmHg	°C	8.30377	1858.01 2	242.801
Benceno	е	kPa	°C	13.7819	2726.81	217.572
Ciclohexano	10	mmHg	°C	7.00854	1296.23	233.309
Ciclohexanona	10	Bar	К	4.1033	1495.51	-63.598
Cloroformo	e	kPa	°C	3.96288	1106.90 4	218.552
DBE	10	Bar	к	3.93018	1302.76 8	81.481
Diclorometano	е	kPa	°C	13.9891	2463.93	223.24
Diisopropil éter	10	Bar	К	3.96649	1135.03 4	-54.92

Tabla 4 (Continuación). Parámetros de la ecuación de Antoine según método de (Smith, Van Ness, & Abbott, 2007).

Sustancia	Base del logaritm o	Presión	т	А	В	С
Dimetil éter	10	mmHg	°C	7.10736	946.89	248.645
Dodecano	10	mmHg	°C	7.22883	1807.47	199.381
Etanol	е	kPa	°C	16.8958	3795.17	230.918
Etanolamina	10	mmHg	°C	8.94014	2432.11	236.48
Heptano	е	kPa	°C	13.8622	2910.26	216.432
Isooctano	е	kPa	°C	13.6703	2896.31	220.767
Metanol	е	kPa	°C	16.5785	3638.27	239.5
Metil isobutil - cetona	е	kPa	°C	3.95298	1254.09 5	-71.537

Naftaleno	10	mmHa	ംറ	7 17709	1858 77	214 657
Nartaleno	10	mining	C	7.17705	1050.77	214.007
n-Hexano	е	kPa	°C	13.8193	2696.04	224.317
Nitroetano	10	mmHg	°C	7.50847	1640.80 5	240.115
Nitrometano	е	kPa	°C	14.7513	3331.7	227.6
n-Octano	е	kPa	°C	13.9346	3123.13	209.635
n-Pentano	е	kPa	°C	13.7667	2451.88	232.014
Propano	10	mmHg	°C	7.01887	889.864	257.084
Propil vinil éter	е	kPa	K	11.8597	1640.53	-111.42
Terbutanol	е	kPa	°C	14.8445	2658.29	177.65
Tetracloruro de carbono	е	kPa	°C	14.0572	2914.23	232.148
Tetrahidrofurano	е	mmHg	°C	16.11	2768.38	-46.90

Fuente: Elaboración propia (2017)

 Tabla 5. Características generales de los 28 sistemas binarios.

No.	Sistema	Modelo	Desviación	Azeótrop o
1	2-Metoxi-2-Metilpropano (1) / 2-Butanol (2)	Wilson	+	no
2	1,1,2,2-tetrafluoroetano (1) / Propano (2)	Wilson	+	sí
3	1,2-Dicloroetano (1) / Tetracloruro de Carbono (2)	Wilson	+	sí
4	1,3-Dioxolano (1) / Ciclohexano (2)	Margule s	+	sí
5	1,3-Dioxolano (1) / Etanol (2)	Wilson	+	sí
6	1,4-diclorobutano (1) / Ciclohexanona	Van Laar	+	no
7	1-Propanol (1) / Dodecano (2)	Wilson	+	no
8	2,2,4 Trimetilpentano (1) /1,2-dicloroetano (2)	Van Laar	+	sí
9	2-Propanona (1) / 2-Etoxi-2-metilpropano (2)	Wilson	+	sí

10	Acetona (1) / Diisopropil éter (2)	Wilson	+	sí
11	Ciclohexano (1) / Nafaleno (2)	Wilson	+	no
12	Cloroformo (1) / Metil isobutil-cetona (2)	Wilson	-	no
13	Diisopropil éter (1) / 1-Propanol (2)	Margule s	+	no
14	Diisopropil éter (1) / Metanol (2)	Wilson	+	sí
15	Dimetil éter (1) / Metanol (2)	Wilson	+	no
16	Etanol (1) / Isooctano (2)	Wilson	+	sí
17	Etanol (1) / n-Hexano (2)	Wilson	+	sí
18	Etanol (1) / DBE (2)	Wilson	+	no
19	Etanol (1) / n-octano (2)	Van Laar	+	sí
20	Etanol (1) / Benceno (2)	Wilson	+	sí
21	Etanolamina (1) / Agua (2)	Wilson	-	no
22	Nitroetano (1) / 1,4-Diclorobutano (2)	Wilson	+	no
23	Nitrometano (1) / 1,4-diclorobutano (2)	Wilson	+	no
24	N-pentano (1) / Diclorometano (2)	Wilson	+	sí
25	Propil vinil éter (1) / Etanol (2)	Wilson	+	sí
26	Propil vinil éter (1) / Isooctano (2)	Margule s	+	no
27	Terbutanol (1) / Heptano (2)	Wilson	+	sí
28	Tetrahidrofurano (1) / 1-Propanol (2)	Margule s	+	no

Fuente: Elaboración propia (2017)

Ecuaciones del Coeficiente de Actividad para Sistemas Binarios según (Lee & Hu, 1995)

Ecuación de Margules

$$Ln(\gamma_{1}) = \left[A_{12} + 2 \times x_{1} \times (A_{21} - A_{12})\right] \times x_{2}^{2}$$
 (15)

$$Ln(\gamma_{2}) = \left[A_{21} + 2 \times x_{2} \times (A_{12} - A_{21})\right] \times x_{1}^{2}$$
 (16)

Fuente: Manual del Ingeniero Químico, Perry, 8va. Ed.

Ecuación de Van Laar

$$Ln(\gamma_{1}) = A_{12} \times \left(\frac{A_{21} \times x_{2}}{A_{12} \times x_{1} + A_{21} \times x_{2}}\right)^{2}$$
(17)

$$Ln(\gamma_{2}) = A_{21} \times \left(\frac{A_{12} \times x_{1}}{A_{12} \times x_{1} + A_{21} \times x_{2}}\right)^{2}$$
(18)

DISCUCIÓN DE RESULTADOS

Según Van Ness, Smith y Abott (2007) G. M. Wilson en 1964 publicó un modelo de comportamiento de soluciones conocido como la ecuación de Wilson, basándose en el concepto de composición local.

El concepto de composición local difiere del concepto de composición global, ya que éste último define que la composición de una mezcla es uniforme y las especies se difunden mutuamente hasta alcanzar una distribución al azar, sin hacer ninguna distinción entre moléculas. Mientras que la composición local se basa en que las moléculas tienden a agruparse de cierta forma en determinada zona, distinta a la global.

En otras palabras, dentro de la solución líquida, las composiciones locales difieren de la composición global de la mezcla. Por lo que la ecuación de Wilson toma en cuenta las diferencias de tamaño y fuerzas de atracción de las moléculas. En donde la fracción de volumen local es función de la temperatura y de las energías de interacción, las cuales no Fuente: Manual del Ingeniero Químico, Perry, 8va. Ed.

Ecuación de Wilson

$$Ln(\gamma_{1}) = -Ln(x_{1} + A_{12} \times x_{2}) + x_{2} \times \left(\frac{A_{12}}{x_{1} + A_{12} \times x_{2}} - \frac{A_{21}}{x_{2} + A_{21} \times x_{1}}\right)$$
(19)

$$Ln(\gamma_{2}) = -Ln(x_{2} + A_{21} \times x_{1}) - x_{1} \times \left(\frac{A_{12}}{x_{1} + A_{12} \times x_{2}} - \frac{A_{21}}{x_{2} + A_{21} \times x_{1}}\right)$$
(20)

son dependientes de la temperatura y composición.

En este artículo se obtuvo las energías de interacción de diferentes sistemas binarios a partir de datos experimentales de equilibrio líquido-vapor a los cuales previamente se realizaron pruebas de consistencia termodinámica para poder corroborar la validez de dichos datos. Los resultados obtenidos dieron que el 75.0 % de sistemas se representa de mejor manera con el modelo de Wilson.

La reducción de los datos experimentales permitió determinar que en el 14.29 % de los sistemas, el modelo de Margules realizó una predicción más exacta de los datos, mientras que un 10.71 % tuvo mejores resultados con el modelo de Van Laar. Como se observa, estos sistemas son una minoría con respecto a aquellos donde el modelo de Wilson realizó las mejores predicciones.

Smith, Van Ness y Abbott (2007) han considerado que, en la reducción de datos, el modelo de Margules requiere linealizar los datos. Sin embargo, la expresión requerida ($\frac{G^{E}}{x_{1}x_{2}RT}$) es indeterminada en los límites cuando $x_{1} \rightarrow 0$ y $x_{1} \rightarrow 1$ tornase ilimitado e inmensurable el error. Esto implica que exista un comportamiento asintótico y que una recta de mejor ajuste no podrá describir de manera adecuada estos puntos. Como consecuencia, en la mayoría de los sistemas se logra observar que el modelo de Margules falla al describir los puntos a dilución infinita en el diagrama P-x-y tanto como aquellos puntos cercanos.

De manera análoga, el modelo de Van Laar requiere de una expresión que, aunque se emplee como una línea recta, presenta un comportamiento que diverge de la línea recta $(\frac{x_i x_2 RT}{G^E})$. En este caso, el modelo otorga un valor de 0 en los límites de la composición del componente 1 en la fase líquida y falla para describir los puntos del diagrama P-x-y cuando $x_i \rightarrow 0$ y $x_i \rightarrow 1$.

Aunque las premisas anteriores se observaron válidas en la mayoría de los sistemas, en algunos la tendencia fue que estos modelos otorgaron los mejores resultados. Esto pudo tener como causa que los puntos reportados en la bibliografía se encontraran fuera de la región con comportamiento asintótico de las expresiones linealizadas para la energía libre de Gibbs en exceso. De ser este el caso, la recta de mejor ajuste permitiría predecir de forma adecuada la mayoría de los puntos y por tanto de coeficientes de actividad y propiedades del sistema.

A pesar de que en las condiciones de operación estos modelos presentaron una mejor correlación de los datos que el modelo de Wilson, se siguen apreciando las desventajas de estos modelos. En primera instancia, se basan en un fundamento estadístico de poder describir una recta de mejor ajuste dentro de un modelo que realmente es racional y carecen de un fundamento termodinámico sólido. Esto

resulta en la incapacidad de extender de manera implícita los conceptos hacia sistemas termodinámicos de tres o más componentes y demuestra que solo son válidos para las condiciones de operación.

En contraste, el modelo de Wilson se ha fundamentado termodinámicamente en la teoría de composición local y presenta dos ventajas: se puede predecir el comportamiento de sistemas de múltiples componentes a partir de la interacción binaria y considera la dependencia del coeficiente de actividad con respecto a la temperatura (Smith, Van Ness y Abbott, 2007). En los sistemas analizados para este artículo se observaron diferencias superiores al 10% en el coeficiente de actividad con una variación de 10 K en la temperatura, modificaciones que solo pueden ser estimadas a través del modelo de Wilson.

Igualmente, en el 53.57% de los sistemas se pudo observar que se dio un punto en que un líquido en ebullición de tal composición produjo un vapor de idéntica composición. Por lo que, el líquido no cambia su composición conforme se evapora. Por ello, no es posible la separación de los componentes en este punto y para dicha descripción se le denomina azeótropo.

Además de los sistemas binarios analizados, el 92.86% exhibieron desviaciones positivas de la linealidad lo bastante grandes para causar un máximo en la curva P-x₁ es decir un azeótropo a presión máxima, mientras que 7.14% restante exhibió desviaciones negativas de la linealidad lo bastante grandes para causar un mínimo en la curva P-x₁ es decir un azeótropo a presión mínima.

La existencia de estos casos particulares demuestra la importancia de realizar aproximaciones del valor del coeficiente de actividad. Una solución ideal que siga en su totalidad la ley de Raoult es incapaz de mostrar un azeótropo, debido a que solo existen dos intersecciones entre las líneas de burbuja y rocío, cuando se evalúan las sustancias puras. Solo al implicar el coeficiente de actividad en los modelos se logra que la volatilidad relativa pase por la **CONCLUSIONES**

Se determinó que el 75.0 % de los sistemas de mezclas binarias analizados son representados con una mayor aproximación con el modelo de Wilson.

- Se establecieron los parámetros de la ecuación de Margules para 28 sistemas binarios a partir de datos experimentales de sistemas en equilibrio líquido-vapor.
- 3. Se establecieron los parámetros de la ecuación de Van Laar para 28 sistemas binarios a partir de datos experimentales de sistemas en equilibro líquido-vapor.

unidad en el rango entre 0 y 1 para las fracciones molares.

- Se obtuvo los parámetros independientes de Wilson (constantes de energías de interacción) para 28 de mezclas binarias, a partir de datos experimentales de sistemas en equilibrio líquido-vapor.
- 5. Se determinó que predominó las desviaciones positivas con un porcentaje de 92.86% sobre las desviaciones negativas con un porcentaje de 7.14%, para los sistemas binarios estudiados. Mostrándose la presencia de azeótropos en 16 sistemas binarios.

Bibliografía

- Aouicha, B., Antonio, R., Ilham, M., Jackes, J., & Latifa, N. (2009). Isothermal Vapour – Liquid Equilibria of Monoethanolamine + Water and 4methylmorpholine + water. *Journal of Chemical Engeneering, 54*, 2312-2316.
- Apelblat, A., Tamir, A., & Wagner, M. (1980). Thermodynamics of Acetone – Chloroform Mixtures. *Fluid Phase Equilibria*, 4, 229-255.
- Berro, C., & Embid, J. (1990). Isothermal Vapour – Liquid Equilibria Excess Enthalpies, and Excess Volumes of 1-Chlorobutane + Tetracloromethane, 1,2- Dichloroethane + Tetracloromethane, and 1,2 – Dicloroethane + 1-Chlorobutane Mixtures. Journal of Chemical Engeneering, 35, 266-271.

- Boublikova, L., & Lu, B. (1969). Isothermal vapour-liquid equilibria for the etanoln-octane system. *Journal of applied Chemistry*, 19, 89-92.
- Chang-Ha, L., & Holder, G. (1993). Vapor-Liquid Equilibrium in the Systems Toluene/Naphtalene and Cyclohexane/Naphtalene. Journal of Chemical Engeneering, 38, 320-323.
- Clará, R., Gómez, A., & Sólimo, H. (2007). Isothermal (vapour+liquid) equilibria excess molar volume, viscosity deviation, and their correlations for chloroform + methyl isobutyl ketone binary system. *The Journal of Chemical Thernodynamics, 39*, 261-267.
- Comelli, F., & Francesconi, R. (1995). Isothermal Vapour-Liquid Equilibria at 343.15K for 2,2,4-Trimethylpenatne + Five Clorohydrocarbon Binary

Systems. *Journal of Chemical Engeneering, 40*, 21-24.

- Compostizo, A., Crespo-Colín, A., & Rubio, R. (2009). Isothermal Vapor-Liquid Equilibrium of Binary Mixtures Containing 1-Chlorobutane, Ethanol, or Acetonitrile. *Journal of Chemical Engeneering, 54*, 613-618.
- Dong, X., Gong, M., Liu, J., & Wu, J. (2010). Isothermal (vapour + liquid) equilibrium for the binary {1,1,2,2tetrafluoroethane (R134) + propane (R290)} and {1,1,2,2tetrafluoroethane (R134) + isobutene (R600a)} systems. *The Journal of Chemical Thermodynamics, 42*, 1152-1157. doi:10.1016/j.jct.2010.04.016
- Dragouescu, D., Barhala, A., Teodorescu, M., & Chiscan, D. (2010). Isothermal vapuor-liquid equilibria in cyclohexanone + dichloroalkane binary mixtures at temperaturas from 298.15 to 318.15 K. *Journal of the Serbian Chemical Society, 76*, 305-315. doi:10.2298/JSC090127020D
- Han, K., Hwang, I., Park, S., & Par, I. (2007). Isothermal Vapour-Liquid Equilibrium at 333.15K, Density, and Refractive Index at 298.15K for the Ternary Mixture for Dibutyl Ether + Ethanol + Benzene and Binary Subsystems. Journal of Chemical Engeneering, 52, 1018-1024.
- Han, K., Hwang, I., Park, S., & Par, I. (2007). Isothermal Vapour-Liquid Equilibrium at 333.15K, Density, and Refractive Index at 298.15K for the Ternary Mixture for Dibutyl Ether + Ethanol + Benzene and Binary Subsystems. Journal of Chemical Engeneering, 52, 1018-1024.
- Huey, S., & Stanley, I. (1989). Vapor-Liquid Equilibrium of 1,3-Dioxoiane Systems. *Journal of Chemical Engeneering, 34*, 209-213.

Hwang, I., Han, K., & Park, S. (2007).
Isothermal Binary and Ternary VLE for the Mixtures of Di-isopropyl Ether (DIPE) + 1-propanol + 2,2,4Trymethylpentane at 303.15 K and VE 303.15 K. Journal of Chemical Engeneering, 52, 2503-2508.

- Hwang, I., Han, K., & Park, S. (2007). Isothermal Binary and Ternary VLE for the Mixtures of Propyl Vinil Ether + Ethanol + Isooctane at 323.15 K and VE 293.15 K. *Journal of Chemical Engeneering, 52*, 1118-1122.
- Janaszewski, B., Oracs, P., Goral, M., & Warycha, S. (1982). Vapour-liquid equilibria- I. an apparatus for isothermal total vapour pressure measurements: binary mixtures of etanol and t-butanol with n-hexane, nheptane and n-octane at 313.15K. *Fluid Phase Equilibria, 9*, 295-310.
- Kim, S., Yim, J., Hun-Soo, B., & Lim, J. (2011). Isothermal Vapour-Liquid Equilibrium for the binary system of dimethyl ether + methanol. *Journal of Chemical Engeneering*, 28, 2324-2328.
- Lee, L., & Scheller, W. (1967). Isothermal Vapor-Liquid Equilibrium Data for the Systems Heptane – 1-Propanol at 75°C. and Decane – 1-Butanol at 100°C. *Journal of Chemical & Engineering Data, 12*(4), 497-499.
- Lee, M., & Hu, C. (1995). Isothermal vaporliquid equilibria for mixtures of etanol, acetone, and diisopropyl ether. *Fluid Phase Equilibria*, 109, 83-98.
- Levine, I. (2004). *Fisicoquímica.* España: McGraw-Hill.
- Miyamoto, S., Schinichi, N., Iwai, Y., & Arai, Y. (2001). Mesaurement of Isothermal Vapor-Liquid Equiibria for Monocarboxylic Acid + Monocarboxylic Acid Binary Systems with a Flow-Type Apparatus. *Journal of Chemical Engeneering, 46*, 405-409.

- Narasigadu, C., Subramoney, S., Naidoo, P., Coquelet, C., Richon, D., & Ramjugernath, D. (2012). Isothermal (vapour+liquid) equilibrium data for the Propan-1-ol + Dodecane System at (323, 343.4, 353.2, 363.1 and 369.2) K. Journal of Chemical Engeneering, 57, 862-868.
- Pavíček, J., & Wichterle, I. (2012). Isothermal (vapour+liquid) equilibria in the binary and ternary systems composed of 2propnaol, 2,2,4 – trimethylpentane and 2,4-dimethyl-3-pentanone. *The Journal of Chemical Thernodynamics*, 45, 83-89. doi:http://10.1016/j.jct.2011.09.007
- Poiling, B., Prausnitz, J., & O'Connell, J. (2004). *The properties of gases and liquids.* Estados Unidos: McGraw-Hill.
- Reddy, P., Benecke, T., & Ramjugernath, D. (2012). Isothermal Vapour-Liquid Equilibria for binary mixtures of diisopropyl ether with (methanol, ethanol or 1-butanol): Experimental data, correlations and predictions. *Journal of Chemical Thermodynamics*. doi:http://dx.doi.org/10.1016/j.jct.201 2.11.005
- Salas, J., Arancibia, E., & Katz, M. (1997). Excess molar volumes and isothermal vapor-liquid equilibria in the tetrahydrofuran with propan-1-ol and propan-2-ol systems at 298.15 K. *Canadian Journal of Chemistry, 75*, 207-211.
- Smith, J., Van Ness, H., & Abbott, M. (2007). Introducción a la termodinámica en Ingeniería Química. México: McGraw Hill.

- Teodorescu, M., Dragoescu, D., & Gheorghe, D. (2012). Isothermal (vapour+liquid) equilibria for (nitromethane or nitroethane + 1,4-dichlorobutane) binary systms at temperaturas between (343.15 and 363.15) K. *The Journal of Chemical Thernodynamics*, *56*, 32-37. doi:http://dx.doi,org/10.1016/j.jct.201 2.06.033
- Wu, H., & Sandler, S. (1989). Vapour-Liquid Equilibrium of 1,3-Dioxolane Systems. Journal of Chemical Engeneering, 34, 209-313.
- Younghum, K., Keskinen, K., & Juhani, A. (2004). Vapor – Liquid Equilibrium for Binary Systems 2-Propanol + 2 – Ethoxy-2-methylpropane and Ethyl Ethanoate + 2-Ethoxy-2methylpropane at 333K and 2-Propanone+ 2-Ethoxy-2methylpropane at 323K. Journal of Chemical Engeneering, 49, 1273-1278.
- Zaitseva, A., Laavi, H., Ojala, L., Coxam, J., Ballerat, K., Pokky, J., & Ville, A. (1986). Vapour-Liquid Equilibrium for the n-Pentane – Dichloromethane System at 298.15K. *Journal of Chemical Engeneering*, *31*, 389-390.
- Zurita, J., Soria, M., Postigo, M., & Katz, M. (2015). Isothermal and Isobaric Vapor – Liquid Equilibrium and Excess Molar Enthalpy of Binary Mixtures of 2-Methoxy – 2 – methylpropane + 2 – Methyl-2-butanol or + 2-Butanol. Journal of Chemical Engeneering. doi:http://10.1021/acs.jced.5b00300