ANÁLISIS COMPARATIVO DE MODELOS DE INTERPOLACIÓN DE LA PRECIPITACIÓN EN GUATEMALA (1981-2019)

José Luis Argueta Mayorga, Mayra Virginia Castillo Montes, Walter Arnoldo Bardales Espinoza, William Adolfo Polanco Anzueto, Eugenio Miguel Polanco Sotoj

Resumen


El estudio del comportamiento de la precipitación es muy importante, pues representa una variable de la cual dependen diferentes fenómenos naturales. A nivel mundial, aún se discute el método de interpolación que mejor representa el fenómeno de la precipitación para cada región geográfica. En particular en Guatemala no se han realizado análisis de los modelos que mejor representan el comportamiento de la precipitación en todo el territorio; por tanto, el presente trabajo consiste en comparar los métodos de interpolación IDW, Co-Kriging, Ordinary Kriging, Universal Kriging, Drifted External Kriging, ANUSPLIN y Spline. Como resultados relevantes se establece que los métodos ANUSPLIN e IDW estiman mejor la precipitación a lo largo del año; sin embargo, se observa que para época con menor precipitación el método IDW y Splineson los que mejores resultados demuestran, mientras que, para la época con mayor precipitación, los métodos IDW y ANUSPLIN reportan mejores resultados de estimación.

Palabras clave


Modelo de interpolación, precipitación, validación cruzada, Guatemala.

Citas


Caruso, C., & Quarta, F. (1998).Interpolation methodscomparison. Computers and Mathematics with Applications,35(12), 109–126. https://doi.org/10.1016/S0898-1221(98)00101-1

Chen, D., Ou, T., Gong, L., Xu, C. Y., Li, W., Ho, C.H., & Qian, W. (2010). Spatial interpolationof daily precipitation in China: 1951-2005.Advances in Atmospheric Sciences, 27(6),1221–1232. https://doi.org/10.1007/s00376-010-9151-y

Chen, T., Ren, L., Yuan, F., Yang, X., Jiang, S., Tang,T., Liu, Y., Zhao, C., & Zhang, L. (2017).Comparison of spatial interpolation schemesfor rainfall data and application in hydrologicalmodeling.Water (Switzerland), 9(5), 1–18.https://doi.org/10.3390/w9050342

Delrieu, G., Wijbrans, A., Boudevillain, B., Faure,D., Bonnifait, L., & Kirstetter, P. E. (2014).Geostatistical radar-raingauge merging:A novel method for the quantification ofrain estimation accuracy.Advances inWater Resources, 71, 110–124. https://doi.org/10.1016/j.advwatres.2014.06.005

Di Piazza, A., Conti, F. Lo, Noto, L. V., Viola, F., & LaLoggia, G. (2011). Comparative analysis ofdifferent techniques for spatial interpolationof rainfall data to create a serially completemonthly time series of precipitation for Sicily,Italy.International Journal of Applied EarthObservation and Geoinformation, 13(3), 396–408. https://doi.org/10.1016/j.jag.2011.01.005

Hadi, S. J., & Tombul, M. (2018). Comparison ofSpatial Interpolation Methods of Precipitationand Temperature Using Multiple IntegrationPeriods.Journal of the Indian Society ofRemote Sensing, 46(7),1187–1199. https://doi.org/10.1007/s12524-018-0783-1

Hancock, P. A., & Hutchinson, M. F. (2006). Spatialinterpolation of large climate data sets usingbivariate thin plate smoothing splines.

Environmental Modelling & Software,21(12), 1684–1694. https://doi.org/10.1016/J.ENVSOFT.2005.08.005

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P.G., & Jarvis, A. (2005). Very high resolutioninterpolated climate surfaces for global landareas.International Journal of Climatology,25(15),1965–1978. https://doi.org/10.1002/JOC.1276

Knoben, W. J. M., Freer, J. E., & Woods, R. A. (2019).Technical note: Inherent benchmark or not?Comparing Nash-Sutcliffe and Kling-Guptaefficiency scores.Hydrology and Earth SystemSciences, 23(10),4323–4331. https://doi.org/10.5194/hess-23-4323-2019

Li, J. (2016). Assessing spatial predictive modelsin the environmental sciences: Accuracymeasures, data variation and varianceexplained.Environmental Modelling andSoftware, 80, 1–8. https://doi.org/10.1016/j.envsoft.2016.02.004

Ly, S., Degré, A., & Charles, C. (2013). Differentmethods for spatial interpolation of rainfall datafor operational hydrology and hydrologicalmodeling at watershed scale. A review.

Biotechnology, Agronomy and Society and Environment, 17(2),392–406. https://doi.org/10.6084/m9.figshare.1225842.v1

Nashwan, M. S., Shahid, S., & Wang, X. (2019).Uncertainty in estimated trends using griddedrainfall data: A case study of Bangladesh.Water (Switzerland), 11(2), 5–8. https://doi.org/10.3390/w11020349

Newlands, N. K., Davidson, A., Howard, A., & Hill,H. (2011). Validation and inter-comparison ofthree methodologies for interpolating dailyprecipitation and temperature across Canada.Environmetrics, 22(2),205–223. https://doi.org/10.1002/env.1044

Portalés, C., Boronat-Zarceño, N., Pardo-Pascual,J., & Balaguer-Beser, A. (2008).Un nuevo

método para el cálculo de precipitaciones medias mediante técnicas de interpolación geoestadística considerando las características geográficas y topográficas

del terreno(pp. 1–8). Valencia: Congreso Internacional de Ingeniería Geomática y Topográfica.

Price, D. T., McKenney, D. W., Nalder, I. A.,Hutchinson, M. F., & Kesteven, J. L. (2000).A comparison of two statistical methods forspatial interpolation of Canadian monthlymean climate data.Agricultural and ForestMeteorology, 101(2–3), 81–94. https://doi.org/10.1016/S0168-1923(99)00169-0

Seaman, R. S. (1988). Some real data tests of theinterpolation accuracy of Bratset h’s successivecorrection met hod.Dynamic Metereology andOceanography, 40(2), 40, 173–176. https://doi.org/10.3402/tellusa.v40i2.11791

Taesombat, W., & Sriwongsitanon, N. (2009).Areal rainfall estimation using spatialinterpolation techniques.ScienceAsia,35(3), 268–275. https://doi.org/10.2306/scienceasia1513-1874.2009.35.268

Wagner, P. D., Fiener, P., Wilken, F., Kumar, S., &Schneider, K. (2012). Comparison andevaluation of spatial interpolation schemes fordaily rainfall in data scarce regions.Journalof Hydrology,464–465, 388–400. https://doi.org/10.1016/j.jhydrol.2012.07.026

Wang, S., Huang, G., Lin, Q., Li, Z., Zhang, H., &Fan, Y. (2014). Comparison of interpolationmethods for estimating spatial distribution ofprecipitation in Ontario, Canada.InternationalJournal of Climatology,34(14), 3745–3751.https://doi.org/10.1002/joc.3941

Xu, W., Zou, Y., Zhang, G., & Linderman, M. (2014).A comparison among spatial interpolationtechniques for daily rainfall data in SichuanProvince, China.International Journal ofClimatology, 35(10), 2898–2907. https://doi.org/10.1002/joc.4180

Zhang, M., Leon, C. de, & Migliaccio, K. (2018).Evaluation and comparison of interpolatedgauge rainfall data and gridded rainfall data inFlorida, USA.Hydrological Sciences Journal,63(4),561–582. https://doi.org/10.1080/02626667.2018.1444767


Texto completo: PDF

Refbacks

  • No hay Refbacks actualmente.