Modeling the dynamics of a cantilever AFM Atomic Force Microscopy

Authors

  • Jesus Matamoros Laboratorio Nacional de Nanotecnología LANOTEC, Centro de Alta Tecnología, San José Costa Rica.
  • Jose Vega-Baudrit Laboratorio Nacional de Nanotecnología LANOTEC, Centro de Alta Tecnología, San José Costa Rica. Laboratorio de Polímeros POLIUNA, Escuela de Química, Universidad Nacional de Costa Rica, Heredia, Costa Rica.

Keywords:

simulation, dynamics, cantilever, AFM

Abstract

Abstract

Currently some research involves computing, as well as experiment. On the other hand, computersimulation can provide valuable approaches to scientific problems. The atomic force microscopy(AFM) is one of the scanning probe microscopy techniques, which locally scans interatomic forcesbetween a sample and a probe. The oscillatory motion of the cantilever can be simulated mathematicallyusing a forced damped harmonic oscillator model. The fact that it is possible to mathematicallyapproach the behaviour of the cantilever-sample system, allows them to be programmed and computedto predict the physical behavior at a theoretical level.

Keywords:

Simulation, dynamics, cantilever, AFM.

References

Referencias

Barcons, V., Verdaguer, A., Font, J., Chiesa, M.,

& Santos, S. (2012). Nanoscale Capillary

Interactions in Dynamic Atomic Force

Microscopy. The Journal of Physical

Chemistry C, 116(14), 7757-7766. doi:

1021/jp2107395

Binning, G. (1988). Atomic force microscope

and method for imaging surfaces with

atomic resolution.

Eslami, S., & Jalili, N. (2012). A comprehensive

modeling and vibration analysis of AFM

microcantilevers subjected to nonlinear

tip-sample interaction forces.

Ultramicroscopy, 117, 31-45. doi:

1016/j.ultramic.2012.03.016

Eves, B. J., & Green, R. G. (2012). Limitations

on accurate shape determination using

amplitude modulation atomic force

microscopy. Ultramicroscopy, 115, 14-20.

doi: 10.1016/j.ultramic.2012.01.016

García, R., & Perez, R. (2002). Dynamic atomic

force microscopy methods. Surface

Science Reports, 47.

Gómez, C. J., & Garcia, R. (2010). Determination

and simulation of nanoscale energy

dissipation processes in amplitude

modulation AFM. Ultramicroscopy,

1 0 ( 6 ) , 6 2 6 - 6 3 3 . d o i :

1016/j.ultramic.2010.02.023

Gotsmann, B., & Fuchs, H. (2002). Dynamic

AFM using the FM technique with

constant excitation amplitude. Applied

Surface Science, 188(3-4), 355-362. doi:

1016/s0169-4332(01)00950-3

Hölscher, H., & Schwarz, U. D. (2007). Theory of

amplitude modulation atomic force

microscopy with and without Q-Control.

International Journal of Non-Linear

Mechanics, 42(4), 608-625. doi:

1016/j.ijnonlinmec.2007.01.018

Kahrobaiyan, M. H., Ahmadian, M. T., Haghighi,

P., & Haghighi, a. (2010). Sensitivity and

resonant frequency of an AFM with sidewall

and top-surface probes for both flexural and

torsional modes. International Journal of

Mechanical Sciences, 52(10), 1357-1365.

doi: 10.1016/j.ijmecsci.2010.06.013

Kahrobaiyan, M. H., Rahaeifard, M., & Ahmadian,

M. T. (2011). Nonlinear dynamic analysis

of a V-shaped microcantilever of an atomic

force microscope. Applied Mathematical

Modelling, 35(12), 5903-5919. doi:

1016/j.apm.2011.05.039

Korayem, M. H., Kavousi, a., & Ebrahimi, N.

(2011). Dynamic analysis of tapping-mode

AFM considering capillary force interactions.

Scientia Iranica, 18(1), 121-129. doi:

1016/j.scient.2011.03.014

Korayem, M. H., Noroozi, M., & Daeinabi, K.

(2012). Control of an atomic force

microscopy probe during nano-manipulation

via the sliding mode method. Scientia

Iranica, 19(5), 1346-1353. doi:

1016/j.scient.2012.06.026

Lin, S.-M. (2006). Analytical solutions of the

•rst three frequency shifts of AFM.

Lin, S.-M., Lee, S.-Y., & Chen, B.-S. (2006).

Closed-form solutions for the frequency shift

of V-shaped probes scanning an inclined

surface. Applied Surface Science, 252(18),

2 4 9 - 6 2 5 9 . d o i :

1016/j.apsusc.2005.08.027

Lin, S.-M., Liauh, C.-T., Wang, W.-R., & Ho,

S.-H. (2007). Analytical solutions of the

frequency shifts of several modes in AFM

scanning an inclined surface, subjected to

the Lennard-Jones force. International

Journal of Solids and Structures, 44(3-4),

9 9 - 8 1 0 . d o i :

1016/j.ijsolstr.2006.05.024

Lin, S.-M., & Lin, C.-C. (2009). Phase shifts

and energy dissipations of several modes

of AFM: Minimizing topography and

dissipation measurement errors. Precision

Engineering, 33(4), 371-377. doi:

1016/j.precisioneng.2008.10.005

Lin, S.-M., & Wang, W.-R. (2009). Frequency

shifts and analysis of AFM accompanying

with coupled flexural–torsional motions.

International Journal of Solids and

Structures, 46(24), 4231-4241. doi:

1016/j.ijsolstr.2009.08.016

Liu, W., Yan, Y., Hu, Z., Zhao, X., Yan, J., &

Dong, S. (2012). Study on the nano

machining process with a vibrating AFM

tip on the polymer surface. Applied Surface

Science, 258(7), 2620-2626. doi:

1016/j.apsusc.2011.10.107

Melcher, J., Carrasco, C., Xu, X., Carrascosa,

J. L., Gómez-Herrero, J., José de Pablo,

P., & Raman, A. (2009). Origins of phase

contrast in the atomic force microscope

in liquids. Proc Natl Acad Sci U S A,

( 3 3 ) , 1 3 6 5 5 - 1 3 6 6 0 . d o i :

1073/pnas.0902240106

Pai, N.-S., Wang, C.-C., & Lin, D. T. W. (2010).

Bifurcation analysis of a microcantilever

in AFM system. Journal of the Franklin

Institute, 347(7), 1353-1367. doi:

1016/j.jfranklin.2010.06.008

Pishkenari, H. N., & Meghdari, A. (2011). Effects

of higher oscillation modes on TM-AFM

measurements. Ultramicroscopy, 111(2),

0 7 - 1 1 6 . d o i :

1016/j.ultramic.2010.10.015

Raman, A., Melcher, J., & Tung, R. (2008).

Cantilever dynamics in atomic force

microscopy Dynamic atomic force

microscopy , in essence , consists of a

vibrating. 3(1), 20-27.

Raul D. Rodiguez, E. L., Jaques Jupille. (2012).

Probing the probe AFM tip-pro•ling via

nanotemplates to determine.pdf.

Schwartz, G. a., Riedel, C., Arinero, R.,

Tordjeman, P., Alegría, a., & Colmenero,

J. (2011). Broadband nanodielectric

spectroscopy by means of amplitude

modulation electrostatic force microscopy

(AM-EFM). Ultramicroscopy, 111(8),

3 6 6 - 1 3 6 9 . d o i :

1016/j.ultramic.2011.05.001

Solares, S. D. (2007). Single biomolecule

imaging with frequency and force

modulation in tapping-mode atomic force

microscopy. The journal of physical

chemistry. B, 111(9), 2125-2129. doi:

1021/jp070067+

Tamayo, J., Humphris, a. D., Owen, R. J., &

Miles, M. J. (2001). High-Q dynamic force

microscopy in liquid and its application

to living cells. Biophysical journal, 81(1),

-537. doi: 10.1016/s0006-

(01)75719-0

Wang, C.-C., & Yau, H.-T. (2011). Application

of the differential transformation method

to bifurcation and chaotic analysis of an

AFM probe tip. Computers & Mathematics

with Applications, 61(8), 1957-1962. doi:

1016/j.camwa.2010.08.019

Downloads

Published

2013-05-31

Issue

Section

Artículos