Interface interactions between biological vesicles and inorganic surfaces of biomaterials using atomic force microscopy
Keywords:
Interface, biological vesicles, biomaterials, atomic, force microscopy, liposomeAbstract
Interface interactions between biological vesicles and inorganic surfaces of biomaterialsusing atomic force microscopy.
Abstract
Interface incompatibilities in the interaction between biological microparticles that normally circulate in theblood and the surface of biomaterials implants are normally associated with subsequent rejection reactionsby the immune system. This requires an explanatory model for the behavior observed at the interface ofliposomes and platelets in contact with biomaterials and inorganic surfaces. Thus, allowing the analysis ofthe relationship between the ionic balance of surface forces of attraction between liposome-surface/degreeof deformation and change in the surface properties of liposomal nanoparticles absorbed by the surfacemodification of liposomes with biopolymers such as chitosan. Progress has been made in understanding thedynamics of interfaces for consistency of different lipids vesicles as a model and found that the biopolymercoating of lipid vesicles with chitosan provides better physical stability and an increase in the interface betweenbiomaterials and biomimetic inorganic nanoparticles.
Key words:
Interface, biological vesicles, biomaterials, atomic force microscopy, liposome.
References
Referencias
Abraham, S. A., Waterhouse, D. N., Mayer, L. D.,
Cullis, P. R., Madden, T. D.,& Bally, M.
(2005) The liposomal formulation of doxorubicin.
In Liposomes, Pt E. Vol. 391, 71-97.
Álvarez, M.A., Seyler, D., Madrigal-Carballo S.,
Vila , A. O., &. Molina, .F. (2007). Influence of the
electrical interface properties on the rheological
behaviour of sonicated soy lecithin dispersions.
Journal of Colloid and Interface Science. (309),
-282.
Bangham, A. D. (1993). Chemistry and Physics of
Lipids. LIPOSOMES – THE BABRAHAM
CONNECTION 64, (1-3), 275-285.
Benkoski, J. J., Jesorka, A., Kasemo, B., & Hook,
F. (2005). Light-activated desorption of photoactive
polyelectrolytes from supported lipid bilayers.
Macromolecules. 38(9), 3852-3860.
Claessens, M., Leermakers, F. A. M., Hoekstra, F.
A., & Stuart, M. A. C. (2007). Entropic stabilization
and equilibrium size of lipid vesicles. Langmuir.,
(11), 6315-6320.
Discher, D. E., Ortiz, V., Srinivas, G., Klein, M. L.,
Kim, Y., David, C. A., … &., Ahmed, F. (2007).
Emerging applications of polymersomes in delivery:
From molecular dynamics to shrinkage of tumors.
Progress in Polymer Science. 32(8-9), 838-857.
Discher, D. E.,& Eisenberg, A. (2002) Polymer
vesicles. Science. 297(5583), 967-973.
Graff, A., Winterhalter, M., & Meier, W. (2001)
Nanoreactors from polymer-stabilized liposomes.
Langmuir.17(3), 919-923.
Graneli, A., Rydstrom, J., Kasemo, B., & Hook, F.
(2004). Utilizing adsorbed proteoliposomes trapped
in a non-ruptured state on SiO2 for amplified
detection of membrane proteins. Biosensors &
Bioelectronics. 20(3), 498-504.
Groves, J. T., & Dustin, M. L. (2003). Supported
planar bilayers in studies on immune cell adhesion
and communication. Journal of Immunological
Methods. 278(1-2), 19-32.
Hovis, J. S.,& Boxer, S. G. (2001). Patterning and
composition arrays of supported lipid bilayers by
microcontact printing. Langmuir., 17(11), 3400-
Ishida, T., Takanashi, Y,;& Kiwada, H. (2006) Safe
and efficient drug delivery system with liposomes
for intrathecal application of an antivasospastic drug,
fasudil. Biological & Pharmaceutical Bulletin. 29
(3), 397-402.
Kam, L., & Boxer, S. G. (2003). Spatially selective
manipulation of supported lipid bilayers by laminar
flow: Steps toward biomembrane microfluidics.
Langmuir. 19(5), 1624-1631.
Lasic, D. D. (1988). The mechanism of vesicle
formation. Biochem. Journal. 256(1), 1-11.
Lasic, D. D., Martin, F. J., Gabizon, A., Huang, S.
K.,& Papahadjopoulos, D. (1991). Sterically
stabilized liposomes: a hypothesis on the molecular
origin of the extended circulation times.
Biochim.Biophys.Acta. 1070(1), 187-192.
Leng, J., Egelhaaf, S. U., & Cates, M. E. (2003)
Kinetics of the micelle-to-vesicle transition: aqueous
lecithin-bile salt mixtures. Biophys Journal.85(3),
-46.
Madrigal-Carballo S., Seyler D., Manconi, M., Mura,
S., Vila, A. O. & Molina, F. (2008). An approach
to rheological and electrokinetic behaviour of lipidic
vesicles covered with chitosan biopolymer. Colloids
Surf. A: Physicochem. Eng. Aspects (accepted -
article in press), doi:10.1016/j.colsurfa.2007.11.039.
Meier, W. (2000). Polymer nanocapsules. Chemical
Society Reviews. 29(5), 295-303.
Meier, W., Nardin, C., & Winterhalter, M. (2000).
Reconstitution of channel proteins in (polymerized)
ABA triblock copolymer membranes. Angewandte
Chemie-International. 39(24), 4599.
Mura, S., Manconi, M., Madrigal-Carballo, S.,
Sinico, C., Fadda, A. M., Vila, A. O. & Molina F..
(2008). Composite soy lecithin–decylpolyglucoside
vesicles: A theoretical and experimental study.
Colloids Surf. A: Physicochem. Eng. Aspects
( a c c e p t e d - a r t i c l e i n p re s s ) ,
doi:10.1016/j.colsurfa.2007.09.036.
Nardin, C., Hirt, T., Leukel, J.,& Meier, W. (2000).
Polymerized ABA triblock copolymer vesicles.
Langmuir. 16(3), 1035-1041.
Nardin, C., Thoeni, S., Widmer, J., Winterhalter, M.,
& Meier, W. (2000.) Nanoreactors based on
(polymerized) ABA-triblock copolymer vesicles.
Chemical Communications. (15), 1433-1434.
Nohynek, G. J., Lademann, J., Ribaud, C., & Roberts,
M. S. (2007) Grey goo on the skin? Nanotechnology,
cosmetic and sunscreen safety. Critical Reviews in
Toxicology. 37(3), 251-277.
Olofsson, L., Rindzevicius, T., Pfeiffer, I., Kall, M.,
& Hook, F. (2003). Surface-based gold-nanoparticle
sensor for specific and quantitative DNA
hybridization detection. Langmuir. 19(24), 10414-
Orth, R. N., Wu, M., Holowka, D. A., Craighead,
H. G.,& Baird, B. A. (2003) Mast cell activation on
patterned lipid bilayers of subcellular dimensions.
Langmuir. 19(5), 1599-1605.
Papahadjopoulos, D., Allen, T. M., Gabizon, A.,
Mayhew, E., Matthay, K., Huang, S. K….&
Redemann, C. (1991). Sterically stabilized liposomes:
improvements in pharmacokinetics and antitumor
therapeutic efficacy. Proceeding of the National
Academy of Sciences. U.S.A. 88(24), 11460-11464.
Simson, R., Sackmann, E., Baszkin, A., & Norde,
W. (2000). Mimicking physics of cell adhesion. In
Physical Chemistry of Biological Interfaces, Marcel
Dekker: New York.
Sofou, S. (2007). Surface-active liposomes for
targeted cancer therapy. Nanomedicine., 2(5), 711-
Stadler, B., Falconnet, D., Pfeiffer, I., Hook, F., &
Voros, J. (2004) Micropatterning of DNA-tagged
vesicles. Langmuir. 20(26), 11348-11354.
Taylor, T. M., Davidson, P. M., Bruce, B. D., &
Weiss, J. (2005). Liposomal nanocapsules in food
science and agriculture. Critical Reviews in Food
Science and Nutrition. 45, (7-8), 587-605.
Vermette, P., Meagher, L., Gagnon, E., Griesser, H.
J., & Doillon, C. J. (2002). Immobilized liposome
layers for drug delivery applications: inhibition of
angiogenesis. Journal of Controlled Release. 80(1-
, 179-195.
Wu, M., Holowka, D., Craighead, H. G., & Baird,
B. (2004). Visualization of plasma membrane
compartmentalization with patterned lipid bilayers.
Proceedings of the National Academy of Sciences
of the United States of America. 101(38), 13798-
Yeagle, P. L. (1987). [The Membranes of Cells]
Academic Press, Inc.: San Francisco, CA, USA.